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Abstract
The jamming coverage θd for the random sequential adsorption of aligned
d-dimensional cubes in Rd is studied through a one-gap distribution function.
Heuristic arguments generally used to describe the large time kinetics are found
to imply that this distribution is rather independent of the space dimension. This
is shown to give a quantitative explanation of the so-called Palasti approximation
θd � θd

1 .

PACS numbers: 05.70.Ln, 68.10.Jy

1. Introduction

The random filling of Rd by non-overlapping aligned d-dimensional cubes is one of the simplest
random sequential adsorption (RSA) models [1]. Its one-dimensional version is the car-parking
(CP) problem, solved a long time [2]. As for any RSA model in higher dimension, it remains
unsolved and series expansions [3] or Monte Carlo (MC) simulations [4–6] have been devoted
to its study.

A quantity of central interest is the fraction θ (t) of the total volume occupied by the
adsorbed objects at time t , and in particular its asymptotic value, the jamming coverage
θd = θ (t → ∞). The kinetics of the deposition process close to the jamming limit is also
widely studied. In our case one knows [5, 7] that the asymptotic expansion of the coverage is
θ (t → ∞) � θd −ρd [ln (t)]d−1/t where θd has been measured in two [4,5], three and four [6]
dimensions, the constant ρd being known in two dimensions [4].

There is a curious fact about the values of θd , that one can call the Palasti’s approximation,
which is that the d-dimensional jamming coverage value is very close to the value of the
one-dimensional coverage θ1 = 0.747 598 raised at the dth power, θd � θd

1 . In fact, the strict
equality θd = θd

1 , conjectured long ago by Palasti [8], is not valid as shown in 1991 by a precise
MC simulation of the two-dimensional model [4]. It has been found that θ2 = 0.562 009(4),
which is close but not equal to θ2

1 , since θ2
1 = 0.5589. This false conjecture remains, at least

up to d = 4, an accurate and unexplained approximation.
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In this work we give an explanation of the Palasti approximation that originates from the
particular behaviour of the one-gap distribution function. The first section is devoted to the
study of this function in the one-dimensional case, where it represents the density G(x) of
gaps of length x between two adsorbed segments, and which is well known from the analytical
solution of the CP model. Our aim here is to find an approximate expression as a consequence of
the heuristic arguments of Pomeau and Swendsen [7,9] used to analyse the asymptotic kinetics.
We are then able, without need of the exact solution, to give an accurate approximation of the
constants θ1 and ρ1. The generalization of this method to any dimension is done in the third
section, where we consider a one-gap distribution function Gd(x) defined on parallel lines
intersecting the adsorbed cubes. The asymptotic heuristic arguments of the second section are
found to imply that Gd(x) � G(x), from which the Palasti approximation and a constraint on
the value of the constant ρd can be derived.

2. The car-parking model as an example

This solved model, where unit segments are randomly adsorbed on the line without overlap,
is used here as a testing ground for the method we apply in higher dimensions. We consider
the one-gap distribution function G(x, t) which represents the density of voids of length x

between two adsorbed segments [10]. Since the numbers of gaps and segments are equal, the
following sum rules hold∫ ∞

0
G(x, t) dx = θ (t)

∫ ∞

0
(1 + x)G(x, t) dx = 1 (1)

and G(x, t) is computed from its evolution equation

∂

∂t
G(x, t) = 2

∫ ∞

1+x

dy G (y, t) − H (x − 1) (x − 1) G(x, t) (2)

where H (x) is the Heaviside step function. The solution of this equation, in the case of an
empty line at the initial time t = 0, is

G(x, t) = 2
∫ t

0
e−xuug(u) du for x � 1

G(x, t) = t2g(t)e−(x−1)t for x � 1
(3)

where g(t) = exp (−2
∫ t

0 [1 − e−u] du/u). From relations (1) and (3) one obtains the coverage
θ (t) = ∫ t

0 g (u) du whose asymptotic expansion reads

θ (t) � θ1 − ρ1/t θ1 = 0.7476 ρ1 = G (x = 1, t = ∞) = e−2γ
� 0.315. (4)

One also finds a singularity at x = 0, G (x � 0, t → ∞) = −2ρ1 ln (x), which is characteristic
of the RSA process [7, 9].

It thus appears that G(x, t) at infinite time has a limiting function G (x), vanishing for
x > 1, whose values at x = 0 and 1 are linked by the relation G(x � 0) = −2G(1) ln (x). It
fulfils the sum rules given in equation (1) which become

∫ 1

0
G(x) dx = θ1

∫ 1

0
(1 + x)G(x) dx = 1. (5)

Our aim is now to derive the asymptotic expansion of equation (4), including the numerical
values of θ1 and ρ1, without the exact solution given in equation (3). We apply the method of
Pomeau and Swendsen [7, 9]. At large time, the increase of the coverage is due to segments
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falling into voids of length x, where 1 � x � �, � being a cut-off quantity expected around 2,
and there are (x − 1) ways of filling this gap. Thus

∂

∂t
G(x, t) � − (x − 1) G(x, t) for x � 1 (6)

and
dθ

dt
(t) =

∫ �

1
(x − 1) G(x, t) dx. (7)

One solves the asymptotic evolution equation (6) for G(x, t),

G(x, t) � ρe−(x−1)t for x � 1 (8)

ρ being an unknown constant, and inserting this estimate in equation (7) gives dθ
dt

(t → ∞) �

ρ/t2, i.e. θ (t → ∞) � θ1 − ρ/t , θ1 being considered here as an unknown constant. We
then evaluate G(x, t) for x � 1 at large time, which is the probability to find two deposited
segments S1 and S2 separated by a distance x. This event happens when S2, for example, falls
into the gap between S1 and S3, S3 being a segment already adsorbed at some distance y of
S1, with 1 + x � y � �. There are (y − 1) events of this kind but only one is selected, which
corresponds to the assigned distance x between S1 and S2: its probability is (y − 1)−1, and we
finally obtain

G(x, t) � 2
∫ �

1+x

G(y, t) dy/(y − 1) for x � 1 (9)

where the factor 2 arises from the S1−S2 symmetry in this argument. In the integral appearing in
equation (9), y � 1 and the estimate previously derived in equation (8) for G(y, t) can be used.
One thus obtains G(x, t) � 2ρ

∫ �

1+x
e−(y−1)t dy/(y−1) which in the infinite time limit indicates

a logarithmic singularity for x = 0, such that G(x → 0, t → ∞) � −2ρ ln (x), and since
G(1, ∞) = ρ from equation (8) this can be written G(x → 0, t → ∞) � −2G(1, ∞) ln (x).

In this heuristic approach, it thus appears that there is, for t → ∞, a limiting one-gap
distribution function G(x), vanishing for x > 1, such that G(x → 0) = −2G(1) ln (x). All
these results agree with the exact ones, but the constants θ1 and G(1) are left unspecified.

On the other hand, the sum rules of relation (5) have not been used: they can be used to
fix these constants if one can express G(x) without introducing other parameters. We thus
assume that G(x) on the whole range 0 � x � 1, can be parametrized according to the simple
expression

G(x) = G(1)(x − 2 ln (x)) (10)

which embodies the x � 0 singularity. As
∫ 1

0 (x − 2 ln (x)) dx = 5/2 and
∫ 1

0 (1 + x)

(x − 2 ln (x)) dx = 10/3 one obtains G(1) = 3/10 = 0.3 and θ1 = 3/4 = 0.75, which
is an acceptable approximation of the exact values G(1) = 0.315 and θ1 = 0.7476. We have
also checked that the parametrization (10), in spite of its crudeness, is a good fit of the exact
function.

We show in the next section how a d-dimensional generalization of these arguments
constrains the asymptotic parameters and can explain why the Palasti approximation is an
accurate estimate of the jamming coverage.

3. Asymptotic estimates in any dimension

We consider firstly the two-dimensional case, easy to visualize. In this model, non-overlapping
squares of unit area are adsorbing on a plane in such a way that their edges stay parallel with
two orthogonal directions X and Y .
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The late stages of the RSA process are dominated by the filling of voids which can adsorb
one square but in contrast with the one-dimensional case, the unfilled regions percolate and have
complicated shapes. However, one can select inside such voids the largest rectangles (x, y)

fitting between adsorbed squares. The rectangles (x, y) are parallel to the X and Y directions
and are of size x and y along these directions, with 1 � x, y � �, the cut-off � being expected
of size � 2. As it has been shown in the work of [5], this subset of voids is essential to correctly
reproduce the features of the RSA process in its late stages. The distribution G(x, y; t) of these
rectangular cells (x, y) is a generalization of the one-gap distribution function G(x, t) of the
one-dimensional case, as it allows us to extend equations (6) and (7) in the following way. As
there are (x − 1)(y − 1) ways of adsorbing a square in an (x, y) void, one has

∂

∂t
G(x, y; t) = −(x − 1)(y − 1)G(x, y; t) for x, y � 1 (11)

the corresponding increase of the coverage being

d

dt
θ (t) =

∫ �

1
(x − 1)

∫ �

1
(y − 1)G(x, y; t) dy dx. (12)

One thus obtains from equation (11) G(x, y; t) = ρ2e−(x−1)(y−1)t where ρ2 is some
normalization constant. Inserting this expression in equation (12) gives the asymptotic
behaviour of the coverage

θ (t) � θ2 − ρ2
ln t

t
(13)

in terms of two unknown constants θ2 and ρ2 that we have to determine.
To make contact with the one-dimensional case previously studied, we consider in the

adsorbing plane lines LX and LY parallel with the directions X and Y . The intersections of
these lines with the adsorbed squares are sequences of unit segments which partially cover
the lines, and we denote by θL the average value of these coverages. To compare θL and θ2,
we consider a line LX and an associated strip SX, infinite in the X direction and of width 2H

in the Y direction (the width is H above LX and H below LX). Close to the jamming limit,
a regular distribution on LX is made of adsorbed segments separated by some distance 2ε in
such a way that θL = 1/(1 + 2ε) and it also appears as the periodic succession of the following
pattern: a void of size ε, an adsorbed segment and, again, a void of size ε. Thus if one chooses
H = 1/2 + ε, the strip SX can be decomposed into adjacent squares of area (1 + 2ε)2, each
cell containing an adsorbed square. The coverage of the cell is thus 1/(1 + 2ε)2, which is also
the coverage of the strip SX and the coverage of the plane from the (X, Y ) symmetry. We
thus obtain θ2 = 1/(1 + 2ε)2 = θ2

L for this regular case and we assume more generally that
θL(t) = √

θ (t) at large time. We now study θL(t).
For this we define a distribution G2(x, t) according to

G2(x, t) = 1

2
√

θ2

∫ �

1
(y − 1)G(x, y; t) dy (14)

in such a way that we have, from equation (12),

1

2
√

θ2

d

dt
θ (t) =

∫ �

1
(x − 1)G2(x, t) dx (15)

and, as the left-hand side member of equation (15) is at leading order d
dt

θL (t) according to our
assumption θL(t) = √

θ (t), we obtain

d

dt
θL (t) =

∫ �

1
(x − 1)G2(x, t) dx (16)

which indicates that G2(x, t) is the one-gap distribution function on the lines LX.
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We now study the asymptotic behaviour of G2(x, t) in the infinite time limit. We know
from equation (11) that G(x, y; t) = ρ2e−(x−1)(y−1)t for x, y � 1 which can be inserted in
equation (14) and one obtains for x � 1

G2(x, t) = ρ2
[
1 − (

1 + (x − 1)(� − 1)te−(x−1)(�−1)t
)]

2
√

θ2(x − 1)2t2
. (17)

This equation shows that, in the infinite time regime, G2(x, t) has a limiting distribution G2(x)

which vanishes for x � 1, as in the one-dimensional case. This behaviour is however not
obvious from simple geometric considerations since in higher dimensions some gaps greater
than one are allowed on the line LX even in the jammed configurations. These gaps, which are
taken into account in our analysis, are thus insignificant in the determination of G2(x). For
x = 1 one finds from equation (17) that G2(x = 1) = ρ2 (� − 1)2/4

√
θ2 and more generally

G2(x) is positive definite for 0 � x � 1. The arguments of the previous section can be repeated
and imply the presence of a logarithmic singularity at contact G2(x � 0) = −2G2(1) ln (x),
and G2(x) fulfils the sum-rules of equation (5) where θ1 is replaced by θL (t → ∞) = √

θ2.
To complete the derivation we parametrize G2(x) as illustrated in equation (10) for G(x),

in such a way that the sum-rules imply
√

θ2 = 0.75 which is the Palasti approximation θ2 = θ2
1

and G2(1) = 0.3. Now from equation (14), G2(1) = ρ2(� − 1)2/4θ1 and we cannot predict
ρ2, for which the value 0.378 has been measured in the MC simulation of [4]. We simply
observe that it implies, for the cut-off �, a value � = 2.543, which is a realistic one.

The generalization to any dimension d of this result is then straightforward. Assuming that

the jamming coverage θL on a line LX is θ
1
d
d , we have to arrive at θL = θ1. This appears possible

if one can define on LX a one-gap distribution function Gd (x) which is a simple rescaling of
its one-dimensional analogue, Gd (x) = Gd (1) G(x)/G(1), since then the sum-rules imply
θL = θ1 and Gd (1) = 0.3 (and thus Gd (x) = G(x)).

To define Gd (x) one considers first the density G(xi; t) of voids (x1, . . . , xd) where
1 � xi � � for 1 � i � d , asymptotically given by G(xi; t) = ρd exp (−t�i=d

i=1(xi − 1)).
The increase of the coverage at large time is

d

dt
θ (t) =

∫ �

1

i=d∏
i=1

[dxi (xi − 1)]G(xi; t) (18)

which gives, as already shown in the work of [5], θ (t) � θd − ρd(ln(t))d−1/t . The one-gap
distribution function on the line LX is

Gd(x1, t) =
∫ �

1

i=d∏
i=2

[dxi(xi − 1)]G(xi; t)/dθ
1−1/d

d (19)

since then
d

dt
θL (t) = d

dt
θ1/d(t) =

∫ �

1
(x − 1)Gd(x, t) dx. (20)

Taking the infinite time limit of Gd(x, t) we obtain Gd (x) for which we can assume the
parametrization Gd (x) = Gd (1) G(x)/G(1) with Gd (1) = ρd(� − 1)2d−2/d2d−1θ

1−1/d

d , as
given by equation (19). This ensures the results θL = θ1 and Gd (1) = 0.3. If the cut-off �

is fixed at the two-dimensional value, we obtain ρ3 = 0.357 and ρ4 = 0.3175, but we do not
have any data to compare.

4. Summary

We have applied to the CP model the arguments used to analyse the large time kinetics of the
RSA process. This leads us to propose a parametrization of the one-gap distribution function
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determining G(x) up to a scaling factor, which is then fixed by the normalization sum-rule. As
a consequence the asymptotic coverage θ1 is also fixed in good agreement with its exact value.

In higher dimensions we have considered a one-gap distribution function Gd(x) defined on
a line parallel with one of the deposition axes. The dominance and universality of the contact
singularity leads us to assume that Gd(x) � Gd(1)G(x)/G(1), which implies Gd(x) � G(x)

through the normalization condition. Thus the coverage θL on the line is the one-dimensional

one θ1. This gives the Palasti relation θd = θd
1 under the regularity assumption θL = θ

1
d

d .
The simplicity of these results is a consequence of the high symmetry of the present

model. Nevertheless, it may happen that this kind of approach gives some quantitative
phenomenological constraints on the asymptotics of other RSA models.
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[2] Rènyi A 1963 Sel. Transl. Math. Stat. Prob. 4 203
Gonzalez J J, Hemmer P C and Hoye J S 1974 Chem. Phys. 3 228

[3] Dickman R, Wang J S and Jensen I 1991 J. Chem. Phys. 94 8252
Bonnier B, Hontebeyrie M and Meyers C 1993 Physica A 198 1

[4] Brosilow B J, Ziff R M and Vigil R D 1991 Phys. Rev. A 43 631
[5] Privman V, Wang J S and Nielaba P 1991 Phys. Rev. B 43 3366
[6] Jodrey W S and Tory E M 1980 J. Stat. Comput. Simul. 10 87

Blaisdell B and Solomon H 1982 J. Appl. Prob. 19 382
Cooper D W 1988 J. Appl. Prob. 26 664
Nord R S 1991 J. Stat. Comput. Simul. 39 231

[7] Swendsen R H 1981 Phys. Rev. A 24 504
[8] Palasti I 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 353
[9] Pomeau Y 1980 J. Phys. A: Math. Gen. 13 L193

[10] Viot P, Tarjus G and Talbot J 1993 Phys. Rev. E 48 480


